The local Jacquet-Langlands correspondence via Fourier analysis

نویسندگان

  • Jared WEINSTEIN
  • Jared Weinstein
چکیده

Let F be a locally compact non-Archimedean field, and let B/F be a division algebra of dimension 4. The JacquetLanglands correspondence provides a bijection between smooth irreducible representations π′ of B× of dimension > 1 and irreducible cuspidal representations of GL2(F ). We present a new construction of this bijection in which the preservation of epsilon factors is automatic. This is done by constructing a family of pairs (L, ρ), where L ⊂ M2(F ) × B is an order and ρ is a finitedimensional representation of a certain subgroup of GL2(F )×B× containing L×. Let π ⊗ π′ be an irreducible representation of GL2(F )×B×; we show that π⊗π′ contains such a ρ if and only if π is cuspidal and corresponds to π̌′ under Jacquet-Langlands, and also that every π and π′ arises this way. The agreement of epsilon factors is reduced to a Fourier-analytic calculation on a finite ring quotient of L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Endoscopic Properties of The Essentially Tame Jacquet-Langlands Correspondence

Let F be a non-Archimedean local field of characteristic 0 and G be an inner form of the general linear group G = GLn over F . We show that the rectifying character appearing in the essentially tame Jacquet-Langlands correspondence of Bushnell and Henniart for G and G can be factorized into a product of some special characters, called zeta-data in this paper, in the theory of endoscopy of Langl...

متن کامل

UNITARY DUAL OF GL(n) AT ARCHIMEDEAN PLACES AND GLOBAL JACQUET-LANGLANDS CORRESPONDENCE

In [7], results about the global Jacquet-Langlands correspondence, (weak and strong) multiplicity-one theorems and the classification of automorphic representations for inner forms of the general linear group over a number field are established, under the condition that the local inner forms are split at archimedean places. In this paper, we extend the main local results of [7] to archimedean p...

متن کامل

Self-duality and parity in non-abelian Lubin–Tate theory

We give a geometric proof of a “parity-switching” phenomenon that occurs when applying the local Langlands and Jacquet–Langlands correspondence to a self-dual supercuspidal representation ofGL(n) over a nonarchimedean local field. This turns out to reflect a duality property on the self-dual part of the `-adic étale cohomology of the Lubin–Tate tower.

متن کامل

8 On a p - adic extension of the Jacquet - Langlands correspondence to weight 1

In this paper, we consider a novel version of the classical Jacquet-Langlands correspondence, explore a p-adic extension of the correspondence , and as an explicit example we find an overconvergent automorphic form of weight 1 which corresponds to a classical modular form of weight 1, using both experimental and theoretical methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009